

Идентификация параметров источника питания промышленной электрической сети

А.О. Кашканов

Волжский государственный университет водного транспорта

Аннотация: Предлагается способ идентификации значений параметров источника питания промышленной электрической сети методом множественной линейной регрессии, позволяющий определить его внешнюю характеристику на основании выборки текущих значений напряжения и тока в узле нагрузки. Такой подход позволяет в режиме реального времени формировать управляющий сигнал на устройства динамической компенсации искажений напряжения.

Ключевые слова: схема замещения, регулирование напряжения, множественная линейная регрессия.

Задача идентификации параметров источника питания (полного внутреннего сопротивления и напряжения холостого хода) промышленной электрической сети возникает при анализе влияния электроприемников с изменяющимся коэффициентом мощности на величину падения напряжения внутреннем сопротивлении источника [1]. Внутреннее на полном сопротивление источника определяется структурой и протяженностью электрической сети объекта; ниже будем считать его постоянным. Под напряжением холостого хода источника в данной статье понимается напряжение промышленной сети переменного тока, приведенное КО вторичной обмотке трансформатора питания объекта (далее — напряжение источника). Это напряжение может изменяться в определенных пределах согласно [2] и требует измерения в режиме реального времени. Вместе с тем, прямое измерение напряжения источника и сопротивления питающей линии возможно лишь при отключении нагрузки от источника, что потребует остановки производственного процесса.

Ниже предлагается способ, при котором полное внутреннее сопротивление и напряжение источника могут быть определены с помощью математической модели эквивалентного электроприемника с источником

питания [3] методом множественной линейной регрессии [4] на основании действующих значений тока и напряжения в узле нагрузки. Эти параметры определяют внешнюю характеристику источника, зная которую возможно в реальном времени определять амплитуду колебаний напряжения в узле нагрузки и формировать управляющий сигнал на устройства динамической компенсации искажений напряжения (ДКИН).

Рассмотрим эквивалентную схему замещения узла нагрузки (рис. 1),

Рис. 1. Эквивалентная схема замещения узла нагрузки

где U_1 – напряжение источника питания; U_2 – напряжение в узле нагрузки; ΔU – падение напряжения на питающей линии; R_{π}, X_{π} – соответственно эквивалентное активное и реактивное сопротивление питающей линии; I_2 – ток, потребляемый нагрузкой; R_3, X_3 – соответственно эквивалентное активное и реактивное сопротивление нагрузки.

Значения U₂ и I₂ измеряются с помощью установленных в ДКИН датчиков тока и напряжения.

Согласно рис. 1 напряжение в узле нагрузки определяется текущим значением напряжения источника питания, уменьшенным на величину падения напряжения на сопротивлении питающей линии

$$\dot{U}_2 = \dot{U}_1 - \Delta \dot{U} = \dot{U}_1 - \dot{I} \cdot Z_{\mathcal{I}},$$

где $Z_{_{\pi}} = R_{_{\pi}} + jX_{_{\pi}}$ – полное сопротивление питающей линии.

Раскладывая падение напряжения $\Delta \dot{U}$ на активную $\Delta \dot{U}_{P}$ и реактивную $\Delta \dot{U}_{Q}$ составляющую, получим уравнение вида [5, 6]

$$\dot{U}_2 = \dot{U}_1 - \Delta \dot{U}_P - \Delta \dot{U}_Q,$$

или в скалярной форме

$$U_{2} = U_{1} - \frac{P_{2}}{U_{2}} R_{\pi} - \frac{Q_{2}}{U_{2}} X_{\pi} .$$
(1)

Приняв

$$\frac{P_2}{U_2} = I_P, \frac{Q_2}{U_2} = I_Q , \qquad (2)$$

получаем соотношение

$$U_2 = U_1 - R_{_{\mathcal{I}}}I_{_{\mathcal{P}}} - X_{_{\mathcal{I}}}I_{_{\mathcal{Q}}}, \qquad (3)$$

представляющее собой выражение множественной линейной регрессии

$$y = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 , \qquad (4)$$

с двумя переменными $x_{1,}x_{2}$ $(x_{1} = I_{p}, x_{2} = I_{Q})$, в котором *у* соответствует U_{2} ; коэффициентам регрессии $\Theta_{0,}, \Theta_{1}, \Theta_{2}$ отвечают величины $U_{1}, -R_{n}, -X_{n}$.Эти коэффициенты изначально неизвестны и определяются с помощью обучающего набора данных. Для этого проводится некоторое количество *K* измерений напряжения в узле нагрузки U_{2}^{i} при различных активном и реактивном токах I_{p}^{i}, I_{Q}^{i} , потребляемых нагрузкой, где $i = \overline{1, K}$. Эти данные определяют значения

$$X = \begin{bmatrix} 1 & I_P^1 & I_Q^1 \\ 1 & I_P^2 & I_Q^2 \\ \dots & \dots & \dots \\ 1 & I_P^K & I_Q^K \end{bmatrix} -$$
матрицы потребляемых токов размерности 3×*K*,

 $Y = \begin{bmatrix} U_2^1 \\ U_2^2 \\ ... \\ U_2^K \end{bmatrix} -$ матрицы напряжений в узле нагрузки размерности ¹× ^{*K*},

зная которые можно с помощью матричного метода [7, 8] по формуле

$$\boldsymbol{\Theta} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y} \,. \tag{5}$$

найти значения коэффициентов регрессии $\Theta = \begin{bmatrix} \Theta_0 & \Theta_1 & \Theta_2 \end{bmatrix}$ размерности 3×1.

Таким образом, в соответствии с (3)-(5) определяются значения напряжения источника U_1^{θ} и параметры схемы замещения питающей линии $R_{\pi}^{\theta}, X_{\pi}^{\theta}$.

На примере тестового набора данных произведем расчет величин $U_1^{\theta}, R_n^{\theta}, X_n^{\theta}$ для типовых значений $R_n, X_n = 0.05, 0.16, 0.28$ и 0.4 Ом. Общее количество возможных комбинаций R_n, X_n при этом равно 16. Тогда матрица Z_n имеет следующий вид:

 $Z_{\mathcal{I}} = \begin{bmatrix} R_{\mathcal{I}} \\ X_{\mathcal{I}} \end{bmatrix} = \begin{bmatrix} 0.05 & 0.05 & 0.05 & 0.05 & 0.16 & 0.16 & 0.16 & 0.16 & 0.28 & 0.28 & 0.28 & 0.28 & 0.4 & 0.4 & 0.4 & 0.4 \\ 0.05 & 0.16 & 0.28 & 0.4 & 0.05 & 0.16 & 0.28 & 0.4 & 0.05 & 0.16 & 0.28 & 0.4 & 0.05 & 0.16 & 0.28 & 0.4 \end{bmatrix}.$

Напряжение U_1 источника питания примем равным 400*B*. Как было сказано выше, U_1 может изменяться под воздействием внешних факторов. Учтем это обстоятельство при вычислении текущих значений напряжения источника с помощью генератора случайных чисел, распределенных по нормальному закону с математическим ожиданием $M_{U1} = 400B$ и среднеквадратичным отклонением σ_{U1} . Этот параметр в процессе вычислений последовательно принимает значения, равные 1%, 2.5% и 5% от M_{U1} , что соответствует амплитуде колебаний напряжения ±2%, ±5% и ±10% [2].

Установленную мощность узла нагрузки *S* считаем равной 40кВА, 20кВА, 10кВА и 2кВА. Значения мощности подобраны таким образом, чтобы при минимальном сопротивлении питающей линии и максимальном значении

мощности (и наоборот) $\Delta U = 10\%$.

Для всех возможных комбинаций Z_{π} , σ_{U1} и *S* производится численное моделирование, алгоритм реализации которого включает в себя следующие этапы.

1. Определяется размер выборки данных K = 4.

2. Определяются стартовые значения σ_{U1} , Z_{II} , и *S* (в рассматриваемом

примере
$$\sigma_{U1} = 1\%$$
, $Z_{\pi} = \begin{bmatrix} 0.05\\ 0.05 \end{bmatrix}$, $S = 40\kappa BA$).

3. С помощью генератора случайных чисел формируется массив значений полной мощности (потребляемой нагрузкой) размерности K, с математическим ожиданием $M_s = S$ и среднеквадратичным отклонением $\sigma_s = S/2$.

4. Для каждого значения *S* аналогично пункту 5 определяется [9] коэффициент мощности $\cos \varphi$ с параметрами $M_{\cos \varphi} = 0.75$, $\sigma_{\cos \varphi} = 0.1$.

5. Выполняется расчет значений активной и реактивной мощности $P_2 = S \cos \varphi$, $Q_2 = S \sin \varphi$ потребляемых нагрузкой.

6. По формулам (1), (2) определяются текущее напряжение и ток в узле нагрузки, для текущих значений σ_{U1}, *S*, *Z*_π и *K* вычисляется матрица коэффициентов регрессии Θ.

7. Производится сравнение коэффициентов регрессии Θ с исходными значениями U_1 , R_{π} , X_{π} и вычисляется относительная ошибка по формулам

$$U_{1}^{'} = \frac{U_{1}^{\Theta}}{U_{1}} \cdot 100\%, \ R_{\Pi}^{'} = \frac{R_{\Pi}^{\Theta}}{R_{\Pi}} \cdot 100\%, \ X_{\Pi}^{'} = \frac{X_{\Pi}^{\Theta}}{X_{\Pi}} \cdot 100\%.$$

 С целью уменьшения статистической погрешности пункты 3 – 7 повторяются в цикле достаточное количество раз по завершению которого выбирается максимальное значение полученной ошибки.

9. Аналогично в цикле повторяются пункты 3-8 для каждого значения

сопротивления питающей линии Z_{J} .

10.Пункты 3-9 повторяются для каждого значения мощности узла нагрузки *S*, для каждого эксперимента определяется своя погрешность измерений.

11.Пункты 3 – 10 повторяются для каждого значения амплитуды колебаний напряжения σ_{U1} , для каждого эксперимента определяется своя погрешность измерений.

12.Пункты 1 – 11 повторяются с большим *К* до тех пор, пока разница ошибки вычислений между текущим и предыдущим шагами не станет достаточно малой. Для каждого *К* определяется своя погрешность измерений.

В результате имеем матрицу коэффициентов регрессии Θ для различных σ_{U1} , S, Z_{π} и K и по полученным данным оценки точности вычисления значений U_1^{Θ} , R_{π}^{Θ} , X_{π}^{Θ} строим представленные на рис. 2 – 4 графики зависимостей.

Зависимость погрешности $U_1^{'}$ от величины выборки данных К и среднеквадратичного отклонения σ .

Из рис. 2 следует, что точность вычисления значения напряжения перестает существенно увеличиваться при размере выборки от 32 и устанавливается в пределах 3% при колебаниях напряжения источника U₁, не превосходящих 10%

Зависимость погрешности U_1' , от величины выборки данных К установленной мощности нагрузки S при $U_1 \pm 2\%$.

Из рис 3 следует, что значение потребляемой мощности *S* несущественно сказывается на погрешности вычисления напряжения источника *U*₁ и при уменьшении *S* в 20 раз уменьшается только в два раза.

Зависимость погрешности R'_{J} от величины выборки данных K установленной мощности нагрузки S и амплитуды колебаний напряжения σ_{U1} .

В свою очередь, точность вычисления активного и реактивного сопротивлений имеет ярко выраженную обратную зависимость от мощности *S* (рис. 4). Это объясняется соизмеримостью значений падения напряжения на сопротивлении питающей линии и колебаний напряжения источника.

По результатам эксперимента можно сделать следующий вывод: практически приемлемая точность (5%) вычисления напряжения в результате обучения достигается при количестве измерений *К* не менее 16, а для вычисления полного сопротивления питающей линии величина *К* должна быть не менее 128. После определения параметров источника

питания производится расчет коэффициентов усиления и постоянных времени звеньев объекта управления и регулятора [10]. Дальнейшее обучение требуется для обновления значения напряжения источника и производится по мере поступления очередных данных измерений.

Литература

1. Кондратьева Н.П., Юран С.И., Владыкин И.Р. и др. Инновационные энергосберегающие электроустановки для предприятий АПК Удмуртской Республики. // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/magazine/archive/n2y2013/1632.

2. Жежеленко И. В., Саенко Ю.Л. Показатели качества электроэнергии и их контроль на промышленных предприятиях. 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 2000. 253 с.

3. Гуревич Ю.Е., Либова Л.Е. Применение математических моделей электрической нагрузки в расчетах энергосистем и надежности электроснабжения промышленных потребителей. М.: ЭЛЕКС КМ, 2008. 248 с.

4. Stedinger J. Negative binomial regression of electric power outages in hurricanes // Journal of infrastructure systems, 2005. December. pp. 258-267.

5. Змиева К.А., Хайро Д.А., Должникова Е.Ю. Снижение потерь и повышение качества электроэнергии за счет применения устройств корректировки параметров питающего напряжения электропотребителей // журнал «Электротехнические комплексы и системы управления». 2012. №3. с 16-21.

6. Зайцев А.И., Плехов А.С., Чувашин Е.Е. Альтернативные энергосберегающие источники реактивной мощности // Электротехнические комплексы и системы управления. 2011. №44. с 8-13.

7. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. Книга 1. В 2-х

8

книгах. М.: Финансы и статистика, 1986. 366 с.

8. Хрущев Ю.В., Панкратов А.В., Бацева Н.Л., Полищук В.И., Тавлинцев А.С. Методика идентификации статических характеристик нагрузки по результатам активного эксперимента // Известия Томского политехнического университета. Техника и технологии в энергетике. Т 325. 2014. №4. с 164-175.

9. Dixon J., Moran L., Rodriguez J., etc Reactive power compensation technologies: State-of-the-art review // Proceedings of the IEEE (vol 93, issue 12). 2005. pp. 2144-2164.

10.Кашканов А.О., Плехов А.С., Федосенко Ю.С. Математическая модель узла нагрузки с эквивалентным электроприемником // Инженерный вестник Дона, 2015, №3, URL: ivdon.ru/ru/magazine/archive/n3y2015/3119.

References

1. Kondrat'eva N.P., Yuran S.I., Vladykin I.R. i dr. Inženernyj vestnik Dona (Rus), 2013, №2 URL: ivdon.ru/magazine/archive/n2y2013/1632/.

2. Zhezhelenko I. V., Saenko Yu.L. Pokazateli kachestva elektroenergii i ikh kontrol' na promyshlennykh predpriyatiyakh [Power quality and it's control in industrial plants] 3-e izd., pererab. i dop. M.: Energoatomizdat, 2000. 253p.

3. Gurevich Yu.E., Libova L.E. Primenenie matematicheskikh modeley elektricheskoy nagruzki v raschetakh energosistem i nadezhnosti elektrosnabzheniya promyshlennykh potrebiteley [The use of mathematical models of the electrical load in the calculation of the reliability of power systems and power supply of industrial consumers]. M.: ELEKS KM, 2008. 248p.

4. Stedinger J. Negative binomial regression of electric power outages in hurricanes. Journal of infrastructure systems, 2005. December. pp. 258-267.

5. Zmieva K.A., Khayro D.A., Dolzhnikova E.Yu. Elektrotekhnicheskie kompleksy i sistemy upravleniya. 2012. №3. pp 16-21.

6. Zaytsev A.I., Plekhov A.S., Chuvashin E.E. Elektrotekhnicheskie kompleksy

i sistemy upravleniya. 2011. №44. pp 8-13.

7. Dreyper N., Smit G. Prikladnoy regressionnyy analiz.[The application of regression analysis] Kniga 1. V 2-h knigah. M.: Finansy i statistika, 1986. 366 p.

8. Khrushchev Yu.V., Pankratov A.V., Batseva N.L., Polishchuk V.I., Tavlintsev A.S. Izvestiya Tomskogo politekhnicheskogo universiteta. Tekhnika i tekhnologii v energetike. T 325. 2014. №4. pp. 164-175.

9. Dixon J., Moran L., Rodriguez J., etc Reactive power compensation technologies: State-of-the-art review. Proceedings of the IEEE (vol 93, issue 12). 2005. pp. 2144-2164.

10. Kashkanov A.O., Plekhov A.S., Fedosenko Yu.S. Inženernyj vestnik Dona (Rus), 2015, №3, URL: ivdon.ru/ru/magazine/archive/n3y2015/3119.