×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon3@bk.ru

Прогнозирование спроса и управление запасами с помощью машинного обучения

Аннотация

Аббакумов А.А., Ямашкин С.А, Карнетов В.Г, Рощихин Д.С.

Дата поступления статьи: 22.04.2025

Данная статья посвящена изучению возможностей технологии машинного обучения для прогнозирования спроса на товары. В исследовании анализируются различные модели и возможности их применения в рамках задачи предсказания будущих продаж. Наибольшее внимание акцентировано на современных методах анализа временных рядов, в частности нейросетевые и статистические подходы. Полученные в ходе исследования результаты наглядно демонстрируют преимущества и недостатки разных моделей, степень влияния их параметров на точность прогноза в рамках задачи прогнозирования спроса. Практическая значимость полученных выводов определяется возможностью использования полученных результатов в анализе схожего набора данных Актуальность исследования обусловлена необходимостью точного прогнозирования спроса на товары для оптимизации запасов и сокращения издержек. Использование современных методов машинного обучения позволяет повышать точность предсказаний, что особенно важно в условиях нестабильного рынка и изменяющегося потребительского спроса.

Ключевые слова: алгоритмы машинного обучения, оценка спроса, точность прогнозирования, анализ временных последовательностей, предсказание объемов продаж, Python, авторегрессионная интегрированная скользящая средняя, случайный лес, градиентный бустинг, нейронные сети

2.3.1 - Системный анализ, управление и обработка информации

.